If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+15p-400=0
a = 1; b = 15; c = -400;
Δ = b2-4ac
Δ = 152-4·1·(-400)
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{73}}{2*1}=\frac{-15-5\sqrt{73}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{73}}{2*1}=\frac{-15+5\sqrt{73}}{2} $
| 12–3x=0 | | Y^2-8y+80=10 | | 5(2a+1)=a+14 | | 3x+1=-2x+19 | | 14=2/7y | | 8d+2=5d+11 | | -6x+29=-13 | | 3c+21=19c+13 | | 8.2+3.3c=1.3c | | 3c+21=18c+13 | | 6(x=11)42 | | x-109=7 | | 5(2z-3)=25 | | x-154=3 | | x*x*x-x-15600=0 | | x+92=5 | | 3(4y+3)=33 | | 6k+3=12 | | 2(x+3)-1=x+6 | | 4p^2+8p-1=0 | | -3-7x=4 | | 1.5/x=2.5 | | x*(6*x-7)=90 | | -2x-(-5)=-13 | | 11=x/2=7 | | .9+2a=-3-4a | | 90=-6b=70 | | x-4/20=9/2 | | 2(x-5)=3(4x-1) | | 4x/20=9/2 | | 800=1.5c+c | | 3x-4/5+3x+1/6=7/5 |